Hexenkiiche
1. Einfithrung in die Mikroprozessorarchitektur

Computer sind Gerite, welche eine Liste oder auch Folge von Befehlen abarbeiten. Eine solche
Folge von Befehlen heilit Programm. Diese Programme befinden sich im Speicher. Ausgefiihrt
werden diese Programme von einem Prozessor. Prozessor und Speicher sind durch Busse
miteinander verbunden.

Bus)
Prozessor Speicher

[lustration 1.1: Einfachste Darstellung eines Computers

Man kann sich den Speicher wie eine lange Liste mit Zeilennummern vorstellen. In jeder Zeile
steht ein Befehl.

Veranschaulicht sieht das in etwa so aus:

Zeile Befehl

1 Gehe einkaufen!

2 Putze das Fahrrad!

3 Staubsauge das Wohnzimmer!
4 Lese die GAG-News!

Tabelle 1.1

Grundsitzlich funktioniert das so: Der Prozessor nennt dem Speicher die Zeilennummer, deren
Befehl er wissen mochte. Der Speicher nennt dem Prozessor diesen Befehl, und der Prozessor
fiihrt 1hn aus.

Statt Zeile sagt man beim Computer jedoch Adresse. Technisch umgesetzt wurde dieser Ablauf
mit Hilfe eines Programmzdhlers (englisch programm counter, kurz PC), einem Adress- und
einem Datenbus.

Im Programmzéhler steht die Adresse, welche der Prozessor wissen mochte. Der
Programmzihler fingt nach dem Anschalten bei Null an und wird nach jeder Ausfiihrung eines
Befehls automatisch erhoht. Der Programmzéhler ist liber den Adressbus mit dem Speicher
verbunden. Der Speicher gibt den Inhalt der Adresse, welcher im Programmzihler steht und
iiber den Adressbus an den Speicher gemeldet wird, auf den Datenbus aus. Der Datenbus ist
ebenfalls mit dem Prozessor verbunden. Der Prozessor "sieht" so, was an der Adresse steht,
dessen Adresse er iiber den Adressbus an den Speicher meldet. Dies ist eine ganz starke
Vereinfachung des tatsidchlichen Vorgangs. Aber im Prinzip funktioniert es so.

Datenbus

A 4

Prozessor

[PC]

Speicher

Adressbus

[lustration 1.2: Computer mit Programmzéhler (PC), Adress- und Datenbus

Wihrend der Mensch viele verschiedene Zeichen kennt, z. B. die Ziffern O bis 9 oder die 26
Buchstaben des Alphabets, arbeitet der Computer fiir gewohnlich nur mit zwei verschiedenen
"Zeichen". Diese konnen z. B. mit verschiedenen Spannungswerten verwirklicht werden (es
liegt Spannung an oder nicht). Man kann sich das wie einen Schalter vorstellen, der zwei
verschiedene Positionen einnehmen kann: an oder aus. Man schreibt dafiir auch O oder 1. Jeder
Schalter, z. B. ein Lichtschalter, ist damit auch automatisch ein Speicher. Er kann sich nimlich
die Stellung "merken".

5

Oo—70

[lustration 1.3: Schalter offen (oben) und Schalter geschlossen (unten). Fiir einen offenen
Schalter schreibt man auch O und fiir einen geschlossenen 1.

Wiirde nun jede Adresse des Speichers nur iiber einen einzigen Schalter verfiigen, also nur die
Zustiande an oder aus annehmen konnen, konnte man nicht allzuviel machen. Denn dann konnte
der Computer im besten Fall nur iiber zwei verschiedene Befehle verfiigen. Er konnte kaum
etwas unterscheiden.

Das gleiche betrifft auch den Programmzéhler (PC): wiirde dieser nur iiber einen einzigen
Schalter verfiigen, konnte er nur die zwei Adressen O und 1 vom Speicher unterscheiden. Also
nicht weiter zdhlen als bis eins. Er wiirde abwechselnd hin- und herschalten (an und aus, bzw. O
und 1). Das wire alles.

Genauso wie man die verschiedenen Ziffern 0, 1, 2, 3,4, 5, 6, 7, 8 9 zu ganzen Zahlen
miteinander kombiniert (z. B. 10, 11, 12 usw.), arbeitet man hier deshalb mit einer Vielzahl von
Schaltern, mit einer Gruppe von Schaltern an jeder Adresse.

O/OMO/OO/OMMAM

Illustration 1.4: Gruppe von acht Schaltern. Fiir das hier dargestellte Beispiel schreibt man auch
0100 1101 (O: offen, 1: geschlossen). Das Leerzeichen dient nur zur besseren Lesbarkeit.

Die aktuelle Adresse steht im Programmzéhler. Diese Adresse wird iiber den Adressbus dem
Speicher mitgeteilt. Die Stellungen all der Schalter an der betreffenden Adresse im Speicher
werden dann vom Speicher iiber den Datenbus dem Prozessor riickgemeldet. Ein Bus besteht
hier also aus einer Vielzahl von Leitungen und dient einem gemeinsamen Zweck, einem
gleichzeitigen Vorgang.

Wieviele verschiedene Kombinationen konnen nun eine bestimmte Anzahl von Schalter haben?
Bei einem Schalter wissen wir: er kann die Stellungen an oder aus (wir schreiben hierfiir auch 0
oder 1) haben. Kombiniert man mehrere Schalter, schreibt man die mdglichen Kombinationen
am besten unter Verwendung eines Ubertrages einfach hin. Ein Ubertrag bedeutet, da man
einen weiteren Schalter hinzufiigt, wenn man alle méglichen Kombinationen der bisherigen
Schalter durch hat. Man merkt sich so diesen Ubertrag. Dann fingt man bei den hinteren
Schaltern wieder von vorne an. Hier ein Beispiel mit vier Schaltern:

0000 0
0001 1
0010 (1. ﬁbertrag) 2
0011 3
0100 (2. Ubertrag) 4
0101 5
0110 (3. Ubertrag) 6
0111 7
1000 (4. ﬁbertrag) 8
1001 9
1010 (5. Ubertrag) 10 (1. Ubertrag)
1011 11
1100 (6. Ubertrag) 12
1101 13
1110 (7. ﬁbertrag) 14
1111 15

Tabelle 1.2

Man hat eine gewisse Anzahl von verschiedenen Zeichen, die man durchzahlt. Sind alle
Zeichen durch, fiigt man eine Stelle hinzu (Ubertrag) und fingt wieder von vorne an. Das
funktioniert ungeachtet der Anzahl von Zeichen immer gleich. Hat man weniger Zeichen zur
Verfiigung, findet ein Ubertrag friiher statt. Der Ubertrag steht normalerweise immer davor. Die
linke Stelle ist damit die Hochstwertige, die rechte die niedrigwertigste.

Wir sehen also: Mit einem Schalter sind zwei verschiedene Kombinationen moglich. Mit zwei
Schaltern vier. Mit drei Schaltern acht. Mit vier Schaltern sind es bereits sechszehn. Die Anzahl
der moglichen Kombinationen ist damit 2" (2" bedeutet, die Zahl 2 wird n mal mit sich selbst
malgenommen, also z. B. fiirn = 3:2° = 2 % 2 % 2 = 8). Mit acht Schaltern hat man
bereits 28 = 256 mogliche Kombinationen. Auf diese Anzahl hat man sich anfangs fiir sehr
viele Computer geeinigt wie fiir den Commodore 64 oder Schneider CPC.

Weil viele Schalter schnell sehr uniibersichtlich werden, kann man diese anders darstellen. In
Tabelle 1.2 sehen wir rechts die Folge im Zehnersystem. Dieses System verwendet zehn
verschiedene Zeichen (0, 1, 2, 3,4, 5, 6,7, 8 und 9) und lernen wir in der Schule. Wir konnen
statt 1111, wie in der ersten Spalte angegeben, also auch 15 schreiben (das hat dann die
Bedeutung: vier Schalter sind gesetzt). Es gibt hier eine eindeutige Zuordnung.

Der Mensch ist in der Regel gewohnt, mit dem Zehnersystem zu arbeiten. Doch das muf3 nicht
sein. Man kann mit jedem beliebigen anderen Zahlensystem rechnen.

Weil es sich besser aufgeht, hat man dem Zehnersystem die sechs weiteren Zeichen A, B, C, D,
E und F hinzugefiigt. Es handelt sich dabei um das Hexdezimal- oder Sechszehnersystem.
Erginzen wir die Tabelle 1.2 damit und schreiben wir das ganze noch einmal hin:

Dezimalsystem Hexdezimalsystem

(Zehnersystem) (Sechszehnersystem)
0 0000 0 0
00001 1 1
00010 (1. Ubertrag) 2 2
00011 3 3
00100 (2. Ubertrag) 4 4
00101 5 5
00110 (3. Ubertrag) 6 6
00111 7 7
0 1000 (4. Ubertrag) 8 8
01001 9 9
01010 (5. Ubertrag) 10 (1. Ubertrag) A
01011 11 B
01100 (6. Ubertrag) 12 C
01101 13 D
01110 (7. Ubertrag) 14 E
01111 15 F
1 0000 (8. Ubertrag) 16 10 (1. Ubertrag)

Tabelle 1.3

Wir haben dem ganzen noch eine weitere Zeile hinzugefiigt. Wie man in Tabelle 1.3 sieht,
findet im Hexdezimalsystem der erste Ubertrag erst an 17-ter Stelle oder Zeile statt. Damit
entsprechen vier Schalter mit den moglichen Kombinationen an (0) und aus (1) immer einer
Stelle dem System in der dritten Spalte. Wenn man sechszehn verschiedene Zeichen verwendet,
1aBt sich mit nur einem dieser Zeichen immer eindeutig eine mogliche Kombination von vier
Schaltern darstellen. Das ist von Vorteil und geht mit dem Zehnersystem so nicht.

Natiirlich lassen sich diese Systeme leicht verwechseln, da man ja mitunter die gleichen Zeichen

4

hinschreibt. Ohne weitere Angabe ist unklar, was 10 sein soll. Man muf} deshalb immer
angeben,was gemeint ist!

In der ersten Spalte von Tabelle 1.3 verwenden wir zwei verschiedene Zeichen. Deshalb heif3t
dieses System Bindrsystem (lat. aus zwei Einheiten bestehend).

In der zweiten Spalte von Tabelle 1.3 verwenden wir zehn verschiedene Zeichen. Deshalb heif3t
dieses System Dezimal- oder Zehnersystem. Zur Markierung verwendet man oft ein # vor die
Zahl, also etwa #43.

In der dritten Spalte von Tabelle 1.3 verwenden wir sechszehn verschiedene Zeichen. Deshalb
heifit dieses System Sechszehner oder Hexdezimalsystem. Zur Markierung schreibt man in der
Welt von RISC OS ein & vor die Zahl. Also z. B. &1F. In der Welt von Unix schreibt man aber
ein 0x, also z. B. Ox1f.

Statt von Schaltern spricht man in der Fachsprache jedoch von Bits (engl. binary digit). Spricht
man von Bitbreite, ist damit gemeint, mit wievielen Bits das System gleichzeitig arbeitet.
Typisch sind 8 Bit, 16 Bit, 32 Bit oder mittlweile 64 Bit und mehr.

Ein Byte sind acht Bit. Viele friilhe Computer wie der Commodore 64 oder Amstrad CPC
arbeiten mit einem Byte bzw. acht Bit. Dazu zéhlt aber auch der relativ neue Mega65 von
Trentz Elektronik, welchen man durchaus als Nachfolger des nie auf den Markt gekommenen
Commodore 65 sehen kann. Der Acorn Archimedes arbeitet mit 32 Bit oder 4 Byte. Diesen 32
Bits gibt man auch die Einheit Word (englisch fiir Wort). Ein Word sind also 4 Byte oder 32
Bit.

32 Bit=4 Byte = 1 Word

Dies gilt jedoch nicht immer. Auf anderen Systemen kann ein Word auch 2 Bytes oder 16 Bit
umfassen! Bei der ARM (Acorn Archimedes) sind 16 Bit jedoch wieder ein halbes Word.

219 Bytes = 1024 Bytes entsprechen einem Kilobyte [Kb]. 2!° Kilobytes = 1024 Kilobytes
entsprechen einem Megabyte [MB]. 2!° Megabytes = 1024 Megabytes entsprechen einem
Gigabyte. 2'° Gigabytes = 1024 Gigabytes entsprechen einem Terrabyte [TB]. Man sieht also,
daf} die Einheiten nicht um den Faktor Tausend, sondern um den Faktor
Tausendvierundzwanzig steigen.

Nun enthilt der Speicher nicht nur Befehle fiir den Prozessor, sondern auch Daten. Und der
Prozessor kann den Inhalt einer Adresse nicht nur lesen, sondern auch schreiben. Mit Schreiben
ist gemeint, daf} er die Schalter umstellen, die Bits dndern kann. Uber einen dritten, nimlich
dem Steuerbus, teilt der Prozessor dem Speicher mit, ob er die Adresse lesen oder schreiben,
also den Inhalt andern mochte.

Ob der Inhalt einer Adresse als Befehl oder als Daten verstanden werden muf, hdangt von der
Logik der Befehle und vom Programm ab. Hierbei konnen Fehler passieren. Diese fiihren dazu,

daf} ein Programm nicht richtig, nicht wie gedacht funktioniert. Denn der Prozessor kann das
Programm, welches er gerade abarbeitet, auch iiberschreiben und damit die Befehle verindern
oder 16schen und damit die Logik zerstoren.

Uber den Speicher kommuniziert der Prozessor aber auch mit anderer Elektronik. Man kann
sich das so vorstellen: Wird auf der Tastatur! eine Taste gedriickt, dndert sich an einer ganz
bestimmten Adresse des Speichers der Inhalt. Von der Tastatur wird an dieser Adresse ein ganz
bestimmtes Bitmuster, ein ganz bestimmter Wert gesetzt, welcher eindeutig einer Taste
zugeordnet werden kann. Die Schalter werden nach einer Tabelle der gedriickten Taste
entsprechend umgelegt. Der Prozessor kann diesen Wert an dieser Adresse auslesen und weif3
damit, welche Taste gerade eben gedriickt worden ist. Der Wert an dieser Adresse darf in
diesem Fall vom Prozessor eben nicht als Befehl verstanden werden!

Auf der Tastatur findet man die 26 Buchstaben des Alphabets, die Ziffern O bis 9 sowie diverse
Sonderzeichen. Die Zuordnung von Zeichen und Wert hat man in der ASCII?-Tabelle
festgelegt. Der urspriingliche ASCII-Code ist sieben Bit >lang<, das heilit er besteht aus einer
Folge von sieben Bit. Ein um Sonderzeichen wie den deutschen Umlauten oder dem scharfen S
erweiteter ASCII-Code ist acht Bit lang. Dies diirfte der Grund fiir die gleichzeitige
Verarbeitung von acht Bits fritherer Maschinen sein oder warum man sich auf acht Bit
festgelegt hatte. Sieben Bits wiren auch unpraktisch gewesen wegen der Umrechnung der
Zahlensysteme. Sieben ist eben kein Vielfaches von zwei. Und mit weniger Bits hitte man
einfach nicht genug Zeichen von der Tastatur abbilden, unterscheiden konnen.

Das Gesagte gilt auch fiir andere Gerite wie dem Monitor, dem Lautsprecher oder irgendwelche
Ein- oder Ausginge. So kann der Prozessor an einer ganz bestimmten Adresse einen ganz
bestimmten Schalter umlegen und so einen Ausgang plotzlich auf Spannung umschalten. In
diesem Fall wirkt so ein Bit tatsdchlich wie ein Schalter.

Es ist natiirlich eine ganz blode Idee, an einer solchen Stelle, also an einer solchen Adresse
Information oder einen Befehl hinterlegen zu wollen. Information oder Befehl wiren schlielich
weg, sobald eine Taste gedriickt wiirde. Oder man bekommt an einem Ausgang etwas, was man
gar nicht haben wollte! Deshalb ist es so wichtig, den Speicher des Systems, das man
programmieren will, also die Hardware ganz genau zu kennen!

Bei Mikrokontrollern ist es oft so, daf3 dort nur Befehle ablaufen, welche man selbst fiir dieses
System eingegeben hat. Man muf} dort also keine Riicksicht auf andere schon bereits im
Speicher vorhandenen Programme oder Befehle nehmen. Das macht es etwas leichter.
Allerdings heif3t das auch, daf sich solche Mikrokontroller nur von anderen Computern aus
programmieren lassen. Sie selbst sind ohne Programm ja nicht arbeitsfihig. Ohne Programm
konnen sie nicht programmiert werden.

Die Computer mit Tastatur und Bildschirm sind iiblicherweise kurz nach dem Einschalten
arbeitsfahig. Das heif3t, man kann irgendwas mit ihnen machen. Man kann auf der Tastatur
Tasten driicken und sieht irgendwas auf dem Bildschirm. Damit das so funktioniert, miissen
diese Computer nach dem Einschalten bereits ein oder mehrere Programme gestartet haben.

I Die Tastatur diirfte so ziemlich das erste Eingabegerit gewesen sein.
2 ASCII: American Standard Code for Information Interchange (1968)

6

Diese Programme befinden sich dann bereits im Speicher. Es handelt sich dabei meist um das
Betriebssystem. Es ist auch eine schlechte Idee, diese Programme im Speicher zu
iiberschreiben. Denn dann funktioniert ja irgendwann der Computer nicht mehr.

Man muf als Programmierer neben der Speicherbelegung durch die Hardware auch noch die
Speicherbelegung durch das Betriebssystem kennen und wissen, wie man seine Programme so
fiir das Betriebssystem gestaltet, daf} es sich reibungslos in das System einfiigt. Allerdings kann
man von seinem Programm aus dann auch auf schon vorhandene Folgen von Befehlen
(Betriebssystemroutinen) des Betriebssystems zurlickgreifen.

Wenn wir bisher vom Speicher gesprochen haben, so war immer der Hauptspeicher des
Computers, (engl. random access memory, Kurzbezeichnung RAM), gemeint. Dieser ist direkt
mit dem Prozessor verbunden. Dieser Speicher behilt seinen Inhalt in der Regel nur, wenn das
System angeschaltet ist und unter Spannung steht.

Es gibt jedoch noch viele weitere Arten von Speichern beim Computer. Weil der Hauptspeicher
in der Regel erst nach dem Einschalten aktiv wird, enthilt er zu diesem Zeitpunkt freilich noch
kein Programm. Er kann Programme auch nicht behalten, wenn er abgeschaltet wird. Diese
Programme werden dann geldscht.

Der Prozessor braucht aber ein Programm, damit er arbeiten kann. Dieses Startprogramm steht
in der Regel in einem Festwertspeicher geschrieben (engl. read only memory, Kurzbezeichnung
ROM), welches seinen Inhalt auch dann bewahrt, wenn der Computer abgeschaltet ist. Beim
Einschalten wird der Inhalt von diesem ROM ins RAM eingeblendet. Damit bekommt der
Prozessor ein Programm zur Verfiigung, das er abarbeiten kann. Dieses Programm erst macht
das System laufféahig.

Dieses Startprogramm kann dann von anderen Speichern wie z. B. einer Festplatte, weitere
Daten und Programme in den Hauptspeicher nachladen lassen. Diesen Vorgang nennt man auch
booten.

Auch der Prozessor selbst verfiigt iiber eigene, sehr kleine Speicher. Diese heiflen Register und
konnen meist nur sehr wenige Daten aufnehmen. Ein Register entspricht von der Struktur her
ungefiahr dem Inhalt einer Zeile oder Adresse im Speicher (siehe auch Illustration 1.4). Dort
wird Information hinterlegt. Erst damit arbeitet und rechnet der Prozessor. Der Programmzihler
ist ein spezielles Register. In diesem wird mit jedem Takt des Systems der Inhalt um eins
erhoht, also um eins weitergezihlt oder die Schalter bzw. Bits entsprechend umgeschaltet wie in
Tabelle 1.3 aufgefiihrt.

Man kann auch den Inhalt in diesem Register namens Programmzéhler verdndern. Dafiir gibt es
einen Befehl. Der Prozessor holt sich den nachsten Befehl dann vom Speicher, dessen Addresse
im Programmzéhler steht. Damit konnen Spriinge im Speicher oder im Programm realisiert
werden.

2. Werkzeuge unter RISC OS
2.1 Dateityp Absolute in Editoren wie !StrongED und !Zap

Die ARM, das ist ein bestimmter Prozessor, eine CPU. RISC OS ist ein Betriebssystem,
welches auf diesem Prozessor lauft.

Dateien, welche ausfiihrbare Maschinenprogramme enthalten, haben unter RISC OS den
Dateityp Absolute. Diese Programme liegen im Befehlsatz der ARM vor. Die ARM versteht
diese Befehle direkt.

In dem Programmverzeichnis !StrongED findet man eine Datei namens !RunImage. Diese
hat den Dateityp Absolute und enthidlt Maschinencode. Das Programmverzeichnis 148t sich
offnen, indem man eine der Umschalttasten gedriickt hélt und gleichzeitig einen
Doppelklick mit der Maus darauf anwendet.

] ADFS::HardDisc4.$.Apps.!StrongED = [E
/

| P P

IBoot IHelp IRun IRunimage
il & 0 &
Defaults =~ Resources StartUp Tools =

[lustration 2.1.1: Die Datei mit dem Namen !Runlmage hat hier den Dateityp Absolute.

Diese Verzeichnisse und Dateien liegen auf einem Festwertspeicher wie einer Festplatte
vor. Diese sind nicht gleichzusetzen mit dem Speicher, mit welchem der Prozessor arbeitet.
Es handelt sich um eine andere Art von Speicher! Unter RISC OS sind diese links unten auf
der Symbolleiste zu finden.

Den Inhalt einer solchen Datei kann man sich sinnvollerweise mit einem der michtigen
Editoren !StrongED oder !Zap anzeigen lassen. In !StrongED schaltet man am besten im
Dump-Modus auf die Darstellung ASM um. ASM steht fiir Assembler.

] 4 | ADFS::HardDisc4.$.Apps.!StrongED.|IRunimage
'- _J_IJ_IJ_IJ S EEEEERY

: .I‘1I]U
d 1 MOV

S
. TP, nce w2

A.. : AHDER R1Z,R3,RA,LSL #18
... : AHDER RO,RO,RO
... : AHDER RO,RO,RO
... : AHDER RO,RB,RO
... : AHDER R8,RO,RO
... : AHDER RO,RO,RO
... + ANDER RB,RA,RB,LSR #32
... : AHDER RO,RB,RO
... : AHDER RO,RO,RO
... : AHDER RO,RB,RO
oo d 1 MOV RA, RO

i | Hourglass_Un

1.1 Insert TmaTab - - OO 0 Dump Ww 80 LF

Bild 2.1.2: Die Datei !Runlmage aus dem Verzeichnis !StrongED in !StrongED angezeigt.

In der ersten Spalte sieht man weil3 die Speicheradressen. In der zweiten Spalte sieht man
griin den Maschinencode in hexdezimaler Form. In der dritten Spalte, wieder weil3, sieht
man die Werte aus Spalte zwei als ASCII-Zeichen gedeutet und dargestellt. Bei den letzten
beiden Spalten handelt es sich noch einmal um eine andere Darstellung der Werte aus Spalte
zwei. Hier wird der Speicherinhalt als Mnemonics dargestellt. Mnemonics sind nur eine
andere Darstellung von Maschinencode. Und zwar in einer Art und Weise, die der Mensch
besser lesen kann. Es handelt sich um Assemblerbefehle. Diese hat uns !StrongED aus den
Werten in Spalte zwei errechnet. Spalte zwei und vier bedeuten genau dassselbe.

Ublicherweise werden beim Programmieren diese Mnemonics von einem Assembler, das ist
eine ganz bestimmte Art von Programm, in Maschinencode umgerechnet. Im vorliegenden
Fall wurde jedoch riickwdrts gerechnet, wurden also aus dem Maschinencode die
Mnemonics bestimmt. Die Mnemonics versteht der Prozessor nicht direkt.

Startet man die Datei namens !Runlmage mit dem Dateityp Absolute durch einen
Doppelklick mit der Maus, so ladt RISC OS diese Datei und hinterlegt sie im Speicher ab
der Adresse mit dem hexdezimalen Wert &8000. Anschliefend wird der Programmzéhler
des Prozessors auf diese Adresse gesetzt. Der Prozessor holt sich jetzt von dort den ersten
Befehl und arbeitet das gerade eben in den Arbeitsspeicher geladene und gestartete
Programm ab.

Wenn man sich jetzt viele verschiedene solcher Dateien mit dem Dateityp Absolute ansieht,
wird man feststellen, daf} jedes dieser Programme bei der hexdezimalen Adresse &8000

9

beginnt.

Das ist insofern verwunderlich, weil unter RISC OS mehrere Programme gleichzeitig laufen
konnen. Denn das hieBe ja, daBl jedes Programm im Speicher das andere iiberschreiben
wiirde.

Daf dem nicht so ist, nicht sein kann, sollte klar sein. In fritherer Zeit befand sich zwischen
dem Prozessor und dem Speicher noch ein weiterer Chip namens MEMC, welcher den
Speicher verwaltete. Dieser Chip wies dem Programm dann den tatsdchlichen Speicherort
zu. Die verschiedenen Programme konnen iiber eine Tabelle eingeblendet werden. Fiir den
Prozessor sieht es immer so aus, wie wenn sich nur ein einziges Programm im Speicher
befiande. Inzwischen wurde diese Funktion vom MEMC in den Prozessor selbst integriert.

Die tatsédchlichen Speicheradressen befinden sich also woanders, werden aber fiir den
Prozessor ab der Adresse &8000 eingeblendet.

Wir konnen das iiberpriifen, indem wir zwei Aufgabenfenster (engl. task windows) starten.
Das geht iiber das Pop-up-Menii des Task-Symbols ganz rechts auf der Symbolleiste (engl.
icon bar) oder iiber die Tastenkombination STRG (engl. CTRL) + F12. In beiden Fenstern
sollte nun der Stern der Befehlszeile zu sehen sein.

Im ersten Aufgabenfenster tippen wir einfach memory &8000 ein. Den Befehl miissen
wir, wie jeden Befehl, mit einem Druck auf die Eingabetaste bestétigen.

Im zweiten Aufgabenfenster tippen wir BASIC ein. Anschlieend geben wir *memory &
8000 ein. Der Stern muf hier mit eingegeben werden!

In beiden Fenstern wird uns jetzt der Speicherbereich ab der Adresse &8000 angezeigt. Wir
werden feststellen, da3 uns in beiden Fenstern etwas anderes angezeigt wird. In dem
Aufgabenfenster, wo wir BBC BASIC gestartet haben, sehen wir genau dieses Pogramm im
Speicher liegen. Wir sehen links die Werte in hexdezimaler Darstellung. Rechts sehen wir
das entsprechende ASCII-Zeichen.

So ein Programm im Maschinencode oder in Maschinensprache 148t sich mittels !Zap oder
IStrongED besser anzeigen und analysieren. Es startet also immer mit der Adresse &8000.
Mittels dem Menii Create -> Dump von !StrongEd auf der Symbolleiste konnen wir uns
unter anderem so auch Inhalte des Arbeitsspeichers (engl. read only memory oder RAM)
anzeigen lassen.

In Abbildung 2.1.2 fillt auf, dafl jeder Befehl mit jeder vierten Adresse des Speichers
anfangt. Das liegt daran, daf} der Speicher byteadressiert ist (ein Byte entspricht acht Bits),
ein Befehl jedoch vier Bytes (oder 32 Bits) umfaft.

Friiher konnte der Programmzéhler nur auf jede vierte Adresse gesetzt werden, da Bit O und
1 immer O waren. Die letzten zwei Bits konnten damals nicht liberschrieben werden.

10

Seit der vierten Version der ARM ist das jedoch anders. Hier konnen Bit O und 1 ebenfalls
gesetzt werden. Man sollte das tunlichst vermeiden! Es ist sonst unvorhersehbar, was der
Prozessor machen wird. Der Wert im Programmzéhler sollte also normalerweise immer
durch vier (ohne Rest) teilbar sein.

Bevor der Prozessor das Programm anspringt, schreibt er noch den aktuellen Wert des
Programmzihlers in Register 14. Will man nun sein Programm beenden, muf3 man nur den
Programmzihler auf die Adresse setzen, welche im Register 14 hinterlegt wurde. Damit sind
wir auch schon beim ersten notwendigen Befehl: &E1A0 FO0OE oder als Mnemonics
geschrieben: MOV PC, R14. Wichtig dabei ist natiirlich, da wir den Wert im Register 14
nicht verdandert haben, wihrend unser Programm ablauft. Oder dafl wir den urspriinglichen
Wert im Register 14 wieder dorthin geschrieben haben, bevor dieser Befehl, MOV PC,

R14, zum Einsatz kommt.

Wir konnen nun in !StrongED ein neues (leeres) Dokument erzeugen, indem wir auf das
Symbold von !StrongED auf der Symbolleiste klicken. Dieses leere Dokument speichern
wir unter einem Dateinamen ab. Dabei geben wir ihm gleichzeitig den Dateityp Absolute.
Alternativ konnen wir den Dateityp auch spiter iiber das Dateisystem dndern. Auf jeden Fall
sollten wir dann die Datei schlielen und wieder neu laden, indem wir sie auf das Symbol
von !StrongED auf der Symbolleiste fallen lassen. Alternativ konnen wir sie laden, indem
wir einen Doppelklick mit der Maus bei gleichzeitig gedriickter Umschalttaste anwenden.

Jetzt brauchen wir den BaseMode Dump. Wir finden ithn im Menii von !StrongED (zum
Offnen des Meniis mittlere Maustaste oder Rollrad driicken) unter dem Eintrag BaseMode
-> Change mode -> Dump. Dann klicken wir in der Werkzeugleiste auf ASM.

Nun geben wir dort in der zweiten Spalte den Befehl
E1A0 FOOE

ein und speichern das ganze. (Das Leerzeichen dient nur zur besseren Lesbarkeit und darf
nicht mit eingegeben werden.) Die Eingabe mag am Anfang etwas fremd auf einen wirken.
Statt die Schriftmarke von links nach rechts zu verschieben und die einzelnen Zeichen
nacheinander anzuhingen, werden die Zeichen von rechts nach links geschoben.

11

] B RAM: HamDiscD.$.Damonstratiun 2 = |

NEEEGDr

1.1 Insert TrueTab - ¢ (][] 0 Dump Ww 69 LF |
Bild 2.1.3: Das erste lauffihige Programm in Maschinensprache im Editor !StrongED

Wir konnen selbstverstindlich auch den Editor !Zap verwenden. Wir positionieren dazu den
Mauszeiger iiber dem Symbol von !Zap unten auf der Symbolleiste. Dann driicken wir auf
die mittlere Maustaste bzw. das Drehrad. Nun erscheint ein Menii. Wir schieben die Maus
nacheinander iiber die Eintrige Create -> New file -> Other und klicken im
letzten Menii in der Liste auf auf den Eintrag Absolute. (Um die Untermeniis angezeigt
zu bekommen, miissen wir den Mauszeiger rechts iiber die jeweiligen Pfeile schieben.)

In !Zap funktioniert die Eingabe anders als in !StrongED. In !Zap miissen wir die
Mnemonics eingeben. Also MOV PC, R14. Das Programm rechnet nach einem Druck auf
die Eingabetaste diesen Befehl sogleich in Maschinencode um. Diese Datei konnen wir jetzt
mittels einem Druck auf die Funktionstaste F3 oder iiber das Menii wieder in einem
Verzeichnisfenster ablegen (speichern).

Mittels einem Doppelklick auf das Symbol der Datei konnen wir das Programm starten.

Es scheint sich nichts zu tun. Es tut aber doch etwas: Es gibt die Kontrolle sofort wieder ans
Betriebssystem zuriick. Der Computer stiirzt namlich nicht ab!

Wir konnen den Befehl im Editor dndern in
E1AQ0 EOOF

Wie aus der Darstellung in der rechten Spalte ersichtlich ist, sind jetzt Quell- und
Zielregister vertauscht. Bei &E und &F handelt es sich also um die beiden Register 14 und

12

15. Das Register 15 heifit auch PC. Das ist der Programmzéhler (engl. programm counter,
kurz PC). Dieser Befehl schreibt den aktuellen Wert von Register 15 ins Register 14.
Diesesn Befehl sollten wir an dieser Stelle jedoch tunlichst nicht starten, denn sonst hingt
sich nach dem Programmstart womdoglich noch der Rechner auf!

Wir konnen dem Befehl E1IAQ0 FOOE einen weiteren Befehl voranstellen und so unser
Programm erweitern:

E1AQ 0000
E1AO0 FOOE

Der hinzugefiigte Befehl &E1A0 0000 schreibt den aktuellen Wert von Register O ins
Register 0. Das ist Unsinn. Denn dort steht ja bereits dieser Wert! Sollte hier aber zur Ubung
dienen.

2.2 BBC BASIC

Das BBC BASIC kann unter der Befehls- oder Kommandozeile mit dem Befehl *BASIC
gestartet werden. Zu beachten ist, da3 unter BASIC alle Befehle gro3 geschrieben sein
miissen.

In BBC BASIC konnen wir mit Hilfe der Anweisung ! Werte in den Speicher klopfen. Auf
dem Commodore 64 entspriche das dem Befehl POKE. Folgendes Programm schreibt die
Werte EIA0 FOOE ab der hexdezimalen Adresse &9000 in den Arbeitsspeicher:

10 '&9000=&0E
20 1&9001=&F0
30 '&9002=&A0
40 '&9003=&E1l

Listing 2.2.1

Wir konnen hier den Speicher nicht ab der Adresse &8000 nutzen, weil sich dort das
gestartete BBC BASIC befindet. Sonst wiirden wir dieses iiberschreiben und damit
kaputtmachen.

Das BASIC-Programm wird mit RUN gestartet. Damit 1duft aber noch nicht unser
Maschinencode. Das BASIC-Programm klopft erst einmal nur diese Werte in den Speicher.

Wenn wir jetzt *memory &9000 eingeben, sehen wir an der Adresse &9000 die Werte &
E1AQOFO0OE.

Gestartet werden kann der Maschinencode mit dem Befehl CALL &9000.

13

= TaskWindow * (Taskwindow =

BBC BASIC V (C) Acorn 1989
Starting with 651516 bytes free

ASCII Data
: .8 a...%adspcl:.
: . %8%p«{1)=#local
: a_convert ($p«(1)
: ,".".decimal_poi
: ntS). . gSelf., $sx
: (B),$s2(1) 8sx(2
9 :).%$sx(3). .A.0HA~
: ALK Agel12e
: €21, .A. lg»=scal
: e, A8 Ix=0 ,
: 9. .8,g statescal
:axddle 4 1 gulB=
: 1¢<21 ¢q=18=0. A
B : .gul4=I«. .C.E- 5
: etl..qx. .E.i..E.
: 6 I»=108 , 13..E.

Bild 2.2.1: Unser Maschinenprogramm in BASIC

In Bild 2.2.1 féllt auf, daB der Speicher tatsdchlich byteorientiert ist, d. h. dafl eine Adresse
immer acht Bit umfaft. In der hexdezimalen Schreibweise sind das zwei Stellen. Au3erdem
fallt auf, daBl ein Befehl immer vier Bytes umfaf}t, also 32 Bit. Auf der ARM ist das ein
Word. Damit umfaf3t ein Befehl vier Adressen. Die niedrigste Adresse eines Befehls steht in
der Darstellung von Bild 2.2.1 aber ganz rechts, die hochste ganz links. Das liegt vermutlich
daran, weil die hochste Adresse auf der ARM immer den eigentlichen Befehl umfaf3t. Das
ist reine Festlegungssache und hétte man wohl auch anders machen konnen.

Wir konnen das Listing 2.2.1 natiirlich auch mit einer Schleife machen. Das sihe dann so
aus:

10 FOR a = 0 TO 3

20 READ b

30 !1(&9000 + a) = b

40 NEXT a

50 DATA &0E, &FO0, &AO0, &El

14

Listing 2.2.2

Die Werte konnen wir ruhig hexdezimal eingeben. Wir konnen auch hexdezimale und
dezimale Werte zusammenzihlen lassen. Daran sieht man, wie leistungsfiahig das machtige
BBC BASIC ist!

Mit Hilfe von BBC BASIC konnen wir hexdezimale Werte ins dezimale umrechnen lassen
und umgekehrt.

Der Befehl

PRINT &F4
z. B. schreibt z. B. den dezimalen Wert 244 auf den Bildschirm.

Mit Hilfe der Befehle

a=34; PRINT &a

kann man den dezimalen Wert a ins hexdezimale umrechnen lassen. Der hexdezimale Wert
betrigt &10.

Damit aber noch nicht genug! Das méchtige BBC-BASIC des Archimedes beinhaltet auch
einen Assembler. Wir konnen damit ebenfalls unser erstes Beispielprogramm aus Abschnitt
2.1 erzeugen. BBC BASIC kann den Assemblerbefehl MOV PC, R14 direkt in den
Maschinencode E1A0 FO0OE umrechnen. Wir miissen die hexdezimalen Werte damit nicht
mehr direkt eingeben. Weil es aber einige nette Seiteneffekte mit BBC BASIC gibt, sollten
wir uns das unbedingt ndher ansehen.

Listing 2.2.3 erzeugt den Maschinencode E1A0 FOOE aus dem Assemblerbefehl MOV
PC, R1l4:

10 DIM code$% (100)
20 FOR pass = 0 TO 3 STEP 3
30 P% = code%

40 [

50 OPT pass

60 .start

70 MOV PC, R14
80]

90 NEXT pass

100 PRINT "Startadresse &:" ~code$%

110 PRINT "Programmgrd&Be ist &"; P%-start; "Bytes lang"
120 END

15

Listing 2.2.3

Man kann das Programm in einen Editor eingeben, als Datei mit dem Dateityp BASIC
speichern und per Doppelklick starten. Oder man startet BBC BASIC in einem
Kommandozeilenfenster (Tastekombination STRG + F12) oder auf der Kommandozeile
(Funktionstaste F12) und gibt das Programm mit Zeilennummern ein.

Nun ist es hier nicht besonders sinnvoll, das Programm mit einem Doppelklick zu starten.
Denn das Programm 2.2.3 iibersetzt wieder nur den Assemblerbefehl MOV PC, R14in
Maschinencode. Der Maschinencode selbst wird aber nicht ausgefiihrt.

Wir sollten bei den folgenden Untersuchungen daher wieder auf die Kommandozeile von
BASIC zuriickgreifen. Das Programm kann mittels LOAD "Dateiname" von einer Datei
ins BASIC geholt werden. Damit das funktioniert, ist aber vor jedem Befehl ein Leerzeichen
zu setzen! Wichtig ist auch, daf sich die Datei im aktuellen Arbeitsverzeichnis befindet. Der
Inhalt des Arbeitsverzeichnisses kann mit dem Befehl *CAT abgerufen werden. Bei neueren
Versionen von RISC OS kann das aktuelle Arbeitsverzeichnis mittels dem Meniieintrag Set
Directory gesetzt werden.

CAT steht vermutlich als Abkiirzung fiir englisch catalog, zu deutsch Katalog. Unter Unix
werden die Verzeichnisse auch als Kataloge bezeichnet.

16

=] B4 | TaskWindow * ==
< [Eel i %o 2L

ARM BBC BASIC V (C) Acorn 1989

Starting with 631316 bytes free

Option B2 (Run)

"lnset”
"lUnset”
3 HR+
JLOAD "2,2"
JLIST
18DIN code (188)
20FOR pass = B T0 3 STEP 3
J0P% = code?
1
28 OPT pass
b0 .start
70 Moy PC, R14
8a 1
9OHEXT pass
18BPRINT "Startadresse &:" “code?
118PRINT "Programnngrofle ist &"; P¥-start; "Bytes lang”

g

OPT pass
.start
MOV PC, R14
ardC
Progranngrofle ist &4Bytes lang
H

Insert TrueTab - ¢ [JJ[J[] 0 TaskWindow cw 132
e e

El-

Bild 2.2.2: Unser erstes Assembler-Programm in BBC BASIC

Wir sehen, daf} hier das Programm nicht an der Adresse &8000, sondern an der Adresse &
8FDC beginnt. Das liegt daran, daB wir bereits ein Programm gestartet haben, welches an
der Adresse &8000 beginnt: ndamlich BBC BASIC. BBC BASIC weist dann unserem
Programm innerhalb des Bereiches, den BBC-BASIC selbst verwendet, einen freien
Speicherplatz zu. Dieser Speicherplatz und damit auch die Startadresse kann ein jedes Mal
anders sein.

Das von BBC-BASIC zusammengebaute (engl. to assembly) Programm kénnen wir dann
mittels dem Befehl CALL <startadresse> starten. Im Bild 2.2.2 wire das CALL &
8FDC. Es verhilt sich hier also so ziemlich anders als wie unter dem Abschnitt 2.1

17

beschrieben, wo wir das Programm unter RISC OS direkt eingegeben und gestartet hatten.
Mittels dem Befehl *memory <Adresse> konnen wir uns wieder den Speicher ndher

ansehen.

Geben wir *memory &8000 ein, so sehen wir, daf} sich dort bereits ein Programm
befindet. Es handelt sich um das bereits erwihnte BBC-BASIC, welches wir in Bild 2.2.2

gestartet haben.

[EES| TaskWindow *

A= CHEERSEE

60 .start
708 M0V PC, R14
88 1
9BHEXT pass
188PRINT "Startadresse &:" “code!
110PRINT "Programnmgrofle ist &"; Pi-start;
128EHD

JRUH

08008FDC

08008FDC

08008FDC

08008FDC

08008FOC E1ABFBOE

Startadresse &: 8FDC

Progranmgrofe ist &4Bytes lang

Ynemory 88008

"Bytes lang”

OPT pass
.start
MOV PC, R14

Address

asoogong :
08008020 :
08008040 :
08008060 :
a800808e :
080080A0 :
aeoasace :
080080E0 :

32148
20405241
02683000
972FDCEL
CoF3FRA7A
E1C99463
BEZFB7AS
FCC4AER4
AOFFBBAF

76354
20434242
C27778A2
FCBF?FEL
9DEGBB47
AC7AB39D
E3847436
BCEBESC3
234F46C0

BRAY9B
49334142
9EBCSBDE
A61318CA
20824F23
1F320DEC
43R687DF
4EB?D371
4FRDBBFF

FEDC
20562043
8236081C
DF?FBCC3
89938844
AF7FF74F
2AF96838
FF2B3882
CBFBICIE

32148
20294328
41R66100
bAFDFCA
E424E379
EFFB566A
CEBFAIAC
E13FC200
JBFBFIFC

76354
726F6341
6D7R46CE
CB16B1DC
F4R93FE7?
96074586
DB933ACC
8F141R99
CEF?1143

Insert TrueTab - ¢ [JLICIC] O TaskWindow cw

BRAYB
3931286E
PEFD3F27
62C78ECZ
9FB1521F
A4DB199E
C671581F
79280AC2
E3EDB39B

FEDC:
ADBA3938 :
JOFCA1RE :
72905832 ¢
34708717
74DB7840
92C4A879 :
97BEZEIC :
B67DE13C :

ASCIT Data
ARM BBC BASIC ¥ (E) Hnnrn 1989, .
=h. GxwaP[\fi i

& }

Bild 2.2.3: BBC-BASIC im Speicher ab Adresse &8000

Geben wir hingegen *memory &8FDC ein, so sehen wir unser kleines Programm MOV
PC, R14 oderdie Werte ELA0 FOEO an der Speicheradresse &8FDC:

TaskWindow *

.start
Moy PC, Ri4

Startadresse &:
Progranngrope ist &4Bytes lang
renenory 88000

fAddress
00608000 :
00608620 :
00608640 :
00608060 :
00608080 :
006086A0 :
006088CA :
00B08ED :
renenory BBFDC

fAddress

00808FDC :
00B08FFC :
0080981C :
0080983C :
0080985C :
0080967C :
0080989C :

3210
20405241
02683000
972FDCEL
CoFSFA7A
E1099463
BE2FB7RB
FCC4RER4
OOFFB00F

7654
20434242
C27778R2
FCOF?FEL
9DEGBB4?
AC7AB39D
E3047436
BC6BESCI
234F46C0

BRIB
49534142
9EBC3BDE
A61318CA
J3824F23
1F323DEC
43A687DF
4EB7D371
4FADBBFF

FEDC
20562043
4236D01C
DF7FBCC3
49938844
OF7FFT4F
2AF96058
FF2B8082
CBFB1C3E

32140
20294328
41A66100
6AFDFCA3
E424E379
EFFB366A
CEBFB9BC
E13FC200
JBF8FIFC

7654
726F6341
6D7R46CE
CB16BIDC
F4R93FE?
96074586
DBI33ACC
4F141R99
CEF71143

BAIE
3931206E
7EFD3F27
62C78EC2
9F1521F
A4D8199E
C671501F
7926DAC2
E3EDB39B

FEDC
E1ABFBBE
0379F489
3A0B98F?
29rB0407
DCoBBBRA
2F6RB10O
19030012
FDAF3B82

32180
FBBCCEER
2D25FER
C38DD67R
83A76814
11CF9BBF
E29FBSE6
J30481F9
IF14F6FE

7654
19670437
OBFFFED3
3DBBBBAA
00060000
Q0FF2D16
863D1F4F
B49B1242
AEBB7806

BARIB
7276FAF1
ARGB1957
E9EC6IFR
00737361
6179F409
471EFARA
A3940955
CBEBE3D

FEDC
DD32EZ3F
96727943
78BBLE27
40060000
JBB27F82
EAR9CFAS
7F327915
CIFEL8CA

3210
32072F7D
FEEBDAFD
B797205F
48B23F83
7FOBFF91
490163E0
443C43F8
DBFEB36E

7654
E219C27F
FCIBE?63
QEDBB6Y
400680800
7FB3CFAR
DDDZBEBD
JEEI?FRE
3A3C0957

19,49 Insert TrueTab - ¢ [1L I[[1 0 TaskWindow cw

FEDC: ASCII Data

8DOA3938 : ARM BBC BASIC Y (C) Rculn 1989
3J5FCA1BS CxuAbLR D6, atRZFzn' 74”15
72909832 ¢ diis-d. E. . 1A B iE. EA, ﬁhZHh
34708717

74087040

9204879

970E2E5C

B67DEI3C :

BARIAG:
OOFF832C :

=

Bild 2.2.4: Unser kleines Assembler-Programm MOV

Adresse &8FDC.

18

PC, R14 liegt hier im Speicher ab

Wie bringen wir jetzt dieses kleine Programm E1A0 FOEO in eine Datei? Das konnen wir
mittels dem Befehl

*SAVE <Dateiname><Startadresse>+<Lange>

machen.

51 1 TaskWindow * =

Yemenory 88000

Address : 3z148 76354 FEDC 32148 76354 BR9 8 H ASCII Data
foeasenn : 20405241 70434242 49534142 70062843 70294328 726F6341 3931286F : ARM BAC BASIC U (C) Acorn 1989..
Gxuab[Lfi.Dbu i3

00868820 : 02683080 C27778R2 9EBCIBDE 8236DBIC 41A66188 6D7A46CE 7EFDIFZ?
a0eese4a : 972FDCE1 FCAF?FE1 R61318CA DFVFBCCI GAFDFCE3 CBIGBIDC 62C70EC2
00608860 : CoFOFA7A 9DEGBB47 558724F23 89938B44 E424E379 F4R93FE? 9FA15ZIF
foeesesn : E1C99463 BC7AB39D 1F3230EC BF7FF74F EFFBO66R 96074586 R4DB199E
' BEZFB7A8 E3047436 45A6B7DF ZAF9680B CEBFAIBC DRI33ACC Co71581F
FCC4RER4 BCABEDC3 4EB7D371 FFZBBBBZ E13FCZ08 8F141A99 7978DACZ

3 BOFFBABF 734F46C8 4FADBAFF CBFBIC3E OBFBFIFC CEF71143 E3EDA39B

ry 88FDC

FEDC 3218 7634 BAIS FEDC 3218 1634 g ASCIT Data

E1ABFBBE F8BCCEER 1967C437 7278FAF1 DD5ZEZ23F 32077F7D E219C27F : .4 aBTheldg. nipriaRyl.xR.5.5,04.

B379F409 2D23FER3 BOFFFED3 AR6B1937 96727943 FEEBDAFO FCIBE763 oPij P3

3A0B98F? C38DD67A 30BBOBSA E9ECHIFD 78BBCE2? B797285F BEDBB69S ! " it

29rB0487 85A76814 60080000 80737361 40080000 88823F83 80080000

DCABABBA 11CF980F BOFF2D16 6179F489 3BB27F82 7FOBFF91 7FBICFAR

2F6AB100 E29FB3EG 4F 871EFARA EAAYCFAS 490163E0 DDDZOESD

19930012 358481F9 | ADFS:HardDisc4 §.Daten.Assemblert ~~ [~[c[g

: FDAFIBSZ IF14F6FE ; WR/ 202 BASIC 12:51:34.06 Jul 2025

;‘S“E beispiel! RAFDL+R4 [beispielt WA/ 4 00008FDC 00008FDC |

26,50 Insert TrueTab - ¢ [1LI[110 TaskWindow cw 256

Bild 2.2.5: Unser kleines Maschinenprogramm in eine Datei gespeichert.

In unserem Beispiel lautet der Befehl

*save beispiell &8FDC+&4

Man wird feststellen, daf} diese Datei keinen Dateityp hat. Die Startadresse wird mit
abgespeichert und angezeigt, wenn man die Darstellung im Verzeichnisfenster (englisch
filer) auf Full Info umschaltet. RISC OS weif} bei einem Doppelklick also schon, wo es die
Datei anspringen muf3. Das erkennt auch !StrongED und zeigt das Programm ab der
richtigen Startadresse an. Es bleibt jedoch zu vermuten, daf3 bei dieser Vorgehensweise der
Speicher ab &8000 bis zur Startadresse unseres Programms unbenutzt bleibt, was schade
1st.

Auch eine solche Datei kann also mittels Doppelklick gestartet werden. Ladt man diese
Datei in !StrongED, so werden einem im Dump-Modus wieder die hexdezimalen Werte
E1AO0 FOOE begegegnen.

19

=] B | ADFS::HardDisc4.$.Daten.Assembler.2-2 EE

22 LR/ 202 BASIC 12:51:34 06 Jul 2025 .
[] beispielt LR/ 4 00008FDC 00008FDC g

[

Bild 2.2.5: Unser kleines Beispielprogramm beispiell mittels dem BBC BASIC
Assembler erstellt und in eine Datei gespeichert.

Interessant ist auch, dafl man in BBC-BASIC BASIC-Befehle und den Assembler
miteinander kombinieren kann.

2.3 Acorn Assembler (DDE)

Der Acorn Assembler ist Bestandteil des Desktop Development Environment
(Oberflachenentwicklungsumgebung, kurz DDE) von Acorn, obwohl man damit natiirlich
keine Programme schreiben muf3, welche unter der graphischen Oberflidche von RISC OS
laufen. Das DDE bekommt man heutzutage von RISC OS Open Limited oder iiber den
Plingstore.

Auch der Acorn Assembler kann den Befehl MOV PC, R14 zur Beendigung eines
Programmes in Maschinensprache umrechnen. Unser erstes kleines Beispiel schaut hier so
aus:

AREA |main|, CODE
ENTRY

MOV pc, rl4

END

Listing 2.3

Ganz wichtig ist hier, am Anfang eines jeden Befehls immer ein Leerzeichen zu setzen! Der
Acorn Assembler versteht sonst nicht, was man will.

Wir erstellen einen Ordner oder ein Verzeichnis mit dem Namen s. Dies ist eine Kriicke,
weil es unter RISC OS keine Dateiendungen, sondern nur Dateitypen gibt. Daher hat man
die Dateiendungen in die Ordner- oder Verzeichnisnamen verschoben. Was normalerweise
hinten steht, steht unter RISC OS so davor! Unter RISC OS kann man keine Dateien gleich
benennen, auch wenn sie unterschiedliche Dateitypen aufweisen.

Dann erstellen wir z. B. mit !StrongEd eine Text-Datei mit obigen Inhalt und speichern sie
unter irgendeinem beliebigen Namen in das vorher erstellte Verzeichnis mit dem Namen 's'
ab. Im iibrigen bietet uns !StrongEd den Mode !ObjAsm an. Damit erkennt !StrongEd die
Sprachelemente eines jeden Assembler-Quellprogramms und kann die einzelnen Befehle,
Variablen usw. farblich besser hervorheben. Befindet sich eine solche Textdatei in einem

20

Verzeichnis mit dem Namen s, so erkennt StrongEd die Struktur dieser Datei von selbst und
schaltet beim Laden oder Offnen dieser Datei auf den Mode ObjAsm um.

Eine solche Datei enthélt einen Quellcode. Diesen Quellcode versteht ein Prozessor jedoch
nicht. Daher lassen wir nun diesen Quellcode von einem oder mehreren Programmen auf
mehreren Schritten nacheinander in Maschinensprache umrechnen.

Im Verzeichnis von DDE . Apps . DDE bendtigen wir jetzt die beiden Programme !ObjAsm
und !Link. Da beide im Multitasking laufen, kénnen wir ein jedes einfach per Doppelklick
mit der Maus starten.

Die Bedienung beider Programme findet wie unter RISC OS gewohnt per Drag & Drop
(ziehen und fallen lassen) mit der Maus statt.

Nun nehmen wir die erstellte Textdatei und lassen sie auf ObjAsm auf der Symbolleiste
fallen. Es 6ffnet sich ein Fenster. Wir konnten dort weitere Einstellungen vornehmen.
Klicken aber einfach auf den Knopf Run.

Es wird uns eine Speicherdialogbox angeboten. Die Datei ziehen wir einfach irgendwohin,
am besten aber in ein Verzeichnis mit dem Namen o. Wir konnen uns die neue Datei im
Texteditor ansehen, werden aber nicht recht schlau daraus werden. Es handelt sich noch
nicht um Maschinensprache.

Nun ziehen wir die neue Datei auf das Symbol mit dem Namen Link auf der Symbolleiste.

Die neue Datei speichern wir wieder irgendwohin. Es handelt sich jetzt um eine Datei mit
dem Dateityp Absolute und dem ausfiihrbaren Maschinencode. Diese konnen wir nun mit
einem Doppelklick starten.

21

] ADFS:HardDisc4.$.DDE Apps DDE = 2
7
ok & 7 %
1ABTime IABC IAMU IC++ 1cc ‘CMHG
i 2 A
L) iy (! 4
IDDT IDecACF IDiff IFind ILibFile ILink
i sy i]
IMake IModSqz 10bjAsm 0bjSize |ResCreate IResEd
A3 o [= =fi < G PRM3/pd PRM4/pdf PRMS5A
=17, bepa }'*A /] " "
IResTest ISID 1Squeeze 1SrcEdit ITOANSI IToPCC
.
IUnModSaqz 1Xpand &l

i | ADFS:HardDisc4.§.Daten Assembler.2-3 =

ADFS::HardDisc4.$.Daten.. Assem
W7 ‘Runimage ~ WR/ 132 Absolute 16:08:39 06 Jul 2025

: JJH WL
=o / Directory 13:46:13 06 Jul 2025

=1 / Directory ~ 13:46:09 06 Jul 2025 E ARER oD
=[] ADFS: HardDisc4 $ Daten. Assembler.2-3.0 [~ [

A AR A '

232 233 il IS S ObjAsin A
Bl source Harlesc4.$.Dalen.Assemblar.E—B.s‘ZB‘

[%] ADFS::HardDisc4.$.Daten.Assembler.2-3.s [—
Include | |

. . . Options
232 33 [Throwback __| Debug “LDJOL] 0 ObjAsm [
| No code generation SE

| use G preprocessor
) Pre-UAL ARM) UAL ARM
) Pre-UAL Thumb

-] (=== 17 E o || Ae 1B S 3 m

=]
lisc5 HardDiscX HardDisc4 :0 et Oh|Asm Link

Bild 2.3. 1: Der Acorn Assembler im Einsatz.

= il

==

PIEr

6]

Das Programm gibt die Kontrolle wie gewohnt sofort wieder ans Betriebssystem zuriick.
Allerdings féllt auf, daf3 die Datei des Programms mit 132 Bytes ungewohnlich grof ist.
Sehen wir uns den Inhalt dieser Datei einmal in !StrongEd an.

RAM::RamDisc0.$./Runimage

i 1
: MY RA, RB
: MOV Ra, Re

! JRH,RB,LSL #1

RA,RB, R4
RA,RB,RA
RA,RB,RA
RA,RB,RA
R8,RB,RA
RA,RB,RA
RA,RB,RE,LSR #32
RA,RB,RA
RA,RB,RA
RA,RB,RA
RA, kB
R12,R14,PC

R12,PC,R12

R2,[R1Z, 1481

R12,[R12, #521
R12,R12,R0
R12,R12,R1

PC,R14
RO, [R121, 44

PC,R14

Insert TrueTab - - (][I][] 0 Dum

Bild 2.3.2: Das ungewohnt lange Programm

Wir sehen, dal das Programm wieder mit der hexdezimalen Adresse &8000 beginnt.

22

Allerdings kommt dann drei Takte lang der bereits erwéhnte, recht sinnlose Befehl E1A0
0000 oder MOV RO, RO, der eigentlich gar nichts tut. Anschlieend kommt dann
plotzlich der Befehl &EB (in Maschinensprache) oder BL (in Assemblersprache). Diesen
haben wir jedoch gar nicht im Quellcode eingegeben! Was soll denn das? Sowas hatte ich
nicht erwartet! Wenn notwendig, dann hitte man die anderen Befehle auch im Assembler
eingeben und in Maschinensprache umrechnen lassen konnen. Das wire der bessere, weil
durchsichtigere Weg gewesen!

Unseren eigenen Befehl finden wir dann viel weiter unten an der Stelle &8080.

Wenn man den Acorn Assembler verwendet, gibt es also ebenfalls mitunter unerwiinschte
Seiteneffekte.

2.4 GCC

Die GCC, das ist die GNU Compiler Collection. Diese Programmsammlung stammt aus der
Welt von Unix und wurde nach RISC OS portiert. Sie ist sehr méchtig - hat allerdings das
Problem, daB es von einer anderen Plattform stammt.

Im Gegensatz zum Acorn Assembler arbeitet die GNU Compiler Collection noch wie frither
auf der Kommandozeilenebene. Drag & Drop oder eine graphische Oberfldche ist dieser
Programmsammlung fremd. Das verwundert nicht. So revolutiondr es damals auch war:
Unix stammt aus den sechziger Jahren des letzten Jahrhunderts und ist schon uralt.

Die GCC sollte man z. B. iiber den Plingstore bekommen.

Wie bereits auch schon fiir den Acorn Assembler, legen wir hier wieder ein Verzeichnis mit
dem Namen s an.

Nun erzeugen wir mit !Zap oder !StrongEd oder auch !Edit eine Textdatei. In dieser tippen
wir unser kleines Beispielprogramm in der Assemblersprache des GCCs nieder:

.global start

_start:
MOV PV, R14

Listing 2.4

Wie man merkt, unterscheidet sich dieser Code vom Listing 2.3. Assembler ist leider nicht
gleich Assembler.

Programm 2.4 speichern wir in das Fenster des vorher angelegten Verzeichnisses, welches
den Namen s erhalten hat. Nun klicken wir mit der rechten Maustaste auf das Schliekreuz
des Fensters, um in der Verzeichnisstruktur eine Ebene tiefer zu gelangen. Dort klicken wir

23

im Menii den Eintrag Set Directory an. Damit setzen wir das aktuelle
Arbeitsverzeichnis auf diesen Pfad.

Nun klicken wir auf den Task Manager auf der Symbolleiste. Das ist normalerweise das
Symbol ganz rechts. Dort ziehen wir den Balken neben dem Eintrag Next auf mehrere
Megabytes auf. Der GCC braucht wirklich viel Speicher!

Als néchstes starten wir ein Task Window. Das geht iiber das Menii vom Task Manager auf
der Symbolleiste oder durch die Tastenkombination STRG + F12 (auf englischen Tastaturen
ist STRG CTRL) und geben den Befehl *CAT gefolgt von einem Druck auf die
Eingabetaste (die grofie Taste mit dem Pfeil) ein. Wenn wir alles richtig gemacht haben,
erscheint nun der Inhalt des Verzeichnisses mit dem angelegten Unterverzeichnis s.

Dann geben wir nacheinander die Befehle

*as -0 <Dateiname>.o <Dateiname>.s
*1d -o <Dateiname> <Dateiname>.o

ein. Natiirlich ist statt <Dateiname> der vergebene Dateiname einzugeben! In unserem
Beispiel in Bild 2.4.1 ist das 2-4.

Man kann diese zwei Zeilen auch in eine Datei vom Dateityp Obey packen und diese Datei
mit einem Doppelklick starten.

Und schon wird unser kleines Assemblerprogramm vom GNU in ausfiihrbaren
Maschinencode umgerechnet.

e P TaskWindow * ==
e 7

784 ELF 16:00:42 19 Jul 2025
Directory 12:10:24 13 Jul 2025
Directory ~ 16:00:28 19 Jul 2025 |3
Directory = 16:28:46 12 Jul 2025

Insert TrueTab - - (][I I[] 0 TaskWindow cw 132 LF:

H B2 Tasks
Application tasks

StrongED 752K n——
NewsHound 184K mm 1
Hermes 360K]
Pinboard 256K i
TechWriter 2212K DE—]
TaskWindow 24832K i
Snapper 724K S— 1
SWIftJPEG 128K m Hi
Next 24832K |
Free 1395952K e
| |
' &S o
= 07 e eEAGRLT I)

Bild 2.4.1: Der GCC in Aktion

24

Das Programm funktioniert zwar auch hier. Die erzeugte Datei 148t sich mittels einem
Doppelklick starten. Aber man sehe und staune! Das iibersetzte Programm ist hier
sagenhafte 784 Bytes grof3! Und noch etwas fillt auf: Bei der erzeugten Datei handelt es
sich ja gar nicht um eine Datei vom Dateityp Absolute. Sondern sie hat den Dateityp ELF!

Dieser Dateityp stammt aus der Unixwelt. Und bringt ein Haufen Ballast mit, den unser
Programm so gar nicht brduchte. Wenn man sich das Programm im Dump-Modus von
StrongEd ansieht, so sieht man eine lange Liste von Befehlen. Irgendwo darunter findet sich
dann in einer Zeile unser Befehl: E1A0 FOEO oder MOV PC, R14.

Man sieht also: auch bei der Verwendung der GCC gibt es merkwiirdige Effekte. Assembler
ist nicht gleich Assembler. Und damit fingt der ganze Arger an! Man kann einen Quellcode,
der fiir Assembler A geschrieben wurde, nicht einfach durch Assembler B in
Maschinensprache umrechnen lassen. Das funktioniert nicht.

2.5 Die Kommandozeilenebene

AuBerhalb von BBC-BASIC hatten wir die Programme bisher immer nur von der
Oberfliche aus mit einem Doppelklick mit der Maus gestartet.

Nun gibt es auch die Moglichkeit, ein Programm nur in den Speicher zu laden, ohne es
sofort auszufiihren. Das kann man auf der Kommandozeile (Druck auf Funktionstaste F12
oder Kommandofenster mit der Tastenkombination STRG + F12 oder iiber das POP-UP-
Menii des Aufgabenmanagers) mittels dem Befehl

*load <Dateiname>

machen. Starten kann man das Programm dann mit

*go <Startadresse>

Gibt man keine <Startadresse> ein, so geht RISC OS davon aus, daf die Startadresse
&8000 ist.

Dem Mausklick gleichzusetzen ist der Befehl

*run <Dateiname>
Dieser Befehl 14ddt eine Datei in den Arbeitsspeicher und fiihrt sie sofort aus.

Mittels dem Befehl help <Befehl> kann man mehr iiber einen Befehl erfahren, z. B.

*help run

25

==> Help on keyword Run

*Run loads and executes the named file, passing optional
parameters to it.

Syntax: *Run <filename> [<parameters>]
*

Mit dem Befehl *memory <Startadresse> <Endadresse> lidBt sich ein
Speicherbereich ansehen.

Mit dem Befehl *memoryi <Startadresse> <Endadresse> laflt sich ein
Speicherbereich diassemblieren, d. h. die Inhalte werden als Mnemonics verstanden
angezeigt.

Selbst ein Debugger, mit dem man ein Programm an jeder Stelle unterbrechen und sich die
Register ausgeben lassen kann, ist bei RISC OS schon mit eingebaut. Man muf3 das
Programm zuvor jedoch in den Arbeitsspeicher geladen haben, ohne es auszufiihren.
Deshalb ist es so wichtig zu wissen, wie man unter RISC OS ein Programm nur in den
Arbeitsspeicher holen kann, ohne es sofort auszufiihren. Man muf3 dazwischen nimlich
noch etwas machen.

Haben wir also ein Programm im Maschinencode vom Dateityp Absolute mittels dem
Befehl *1oad <Dateiname> in den Arbeitsspeicher geholt, konnen wir mit Hilfe des
Befehls

*breakset <adresse>

das Programm an jeder beliebigen Stelle dazu zwingen, abzubrechen und eine Ubersicht
iiber den Zustand des Prozessors, das heif3t, eine Liste aller Werte der Register, auszugeben.
Wir konnen den Befehl auch mehrmals hintereinander anwenden und so auch mehrere
Adressen angeben. Eine Liste aller angegebenenAdressen spukt der Befehl *breaklist
aus.

Nachdem wir das Programm mit Hilfe des Befehls *go <adresse> gestartet haben,
bricht das Programm an genau jenen Stellen ab, welche wir zuvor mit dem Befehl *
breakset <adresse> angegeben haben.

Mit dem Befehl *continue wird das Programm weiter fortgesetzt, unter Umstdnden nur
bis zum néchsten mittels dem Befehl *breakset eingegebenen Adresse.

Mit dem Befehl *breakclr konnen die gesetzten Adressen wieder geloscht werden.

Diese Befehle sind natiirlich auch von BBC BASIC aus erreichbar, indem wir den Stern *
vor dem Befehl mit eingeben. Befinden wir uns in der Kommandozeile, so kann der Stern *
vor dem Befehl weggelassen werden. Er schadet allerdings auch nicht. So kann man auch
innerhalb von BBC BASIC aus debuggen.

26

3 Software Interrupts

Um als Programmierer das Rad nicht stindig neu erfinden zu miissen, stellt uns das
Betriebssystem Programme zur Verfiigung, welche wir von unserem Programm aus anspringen
konnen. Diese werden auch Unterprogramme oder Betriebssystemroutinen genannt. Das kann
uns eine Menge Arbeit ersparen. Die ARM hat dafiir einen eigenen Befehl: &EF, gefolgt von
der Nummer der Routine oder des Unterprogramms. Der Befehl muf in dieser hexdezimalen
Schreibweise jedoch wie immer achtstellig sein!

In Assembler schreibt man dafiir auch SWI. SWI steht fiir Software Interrupt. Wir werden bei
dieser speziellen Art von Unterprogrammen daher auch von SWIs reden.

Bei diesem Befehl, &EF, schaut der Prozessor an Hand der folgenden Nummer in einer langen
Liste nach, wo er im Speicher das Unterprogramm findet. Dieses springt er dann an und arbeitet
er ab. Ist das Unterprogramm beendet, setzt er das urspriingliche Programm wieder fort. Dazu
wird, wie bereits erwihnt, der Wert im Programmzéhler verdndert.

Solche Betriebssystemroutinen oder Unterprogramme bzw. SWIs konnen ohne oder mit
Paramter aufgerufen, d. h. angesprungen werden. Fiir RISC OS werden solche
Betriebssystemroutinen unter der Bezeichnung SWI im Programmer's Reference Manual
beschrieben.

3.1 SWIs ohne Parameter

Wir schauen uns der Einfachheit halber zuerst zwei SWIs an, welche ohne Parameter
auskommen. Sie haben die hexdezimalen Nummern &406C0 und &406C1. &406C0
schaltet die Sanduhr ein, &4 06C1 schaltet sie wieder aus. Probieren wir das also einmal in
der Praxis aus und geben zwei kleine Maschinenprogramme in !StrongEd oder in !Zap wie
unter Abschnitt 2.1 beschrieben ein:

EF04 06CO
E1A0 FOEO

Listing 3.1.1

EF04 06Cl1
E1AQ0 FOEO

Listing 3.1.2

Nicht vergessen: Die Befehle miissen in der hexdezimalen Darstellung immer acht Zeichen
lang sein. Der eigentliche Befehl EF steht ganz links. Die fehlenden Stellen zwischen dem
Befehl und der Nummer des SWIs miissen wir deshalb immer mit Nullen auffiillen! Die
kleinste Nummer fiangt namlich rechts an, nicht links. Die Zahlen bauen sich dann wie

27

gewohnt von rechts nach links auf, d. h. der Ubertrag wird immer links an der vorherigen
Stelle angefiigt.

Diese Programme miissen wir wieder in zwei Dateien speichern, bevor wir sie jeweils
mittels einem Doppelklick starten konnen. Siehe hierzu auch den Abschnitt 2.1.

Starten wir Listing 3.1.1 so verwandelt sich der Mauszeiger in eine Sanduhr. Starten wir
Listing 3.1.2, so verwandelt sich die Sanduhr wieder in den Mauszeiger zuriick.

Dies sind die ersten zwei lauffdhigen Programme, welche irgendwas bewirken, was der
Anwender auch sieht. Beide Programme sind jeweils 8 Bytes grof3. So einfach ist das!

In Assembler konnen wir ebenfalls die Nummer des SWIs verwenden. Allerdings soll man
laut diversen Lehrbiichern nicht die Nummer, sondern den Namen des SW1Is angeben.
Dieser Name wird vom Assembler dann in die Nummer des SWIs umgerechnet und ist im
Programmer's Reference Manual festgelegt. Der Prozessor selbst kann mit dem Text nichts
anfangen. Er braucht die Nummer.

Listing 3.1.2 sidhe im Assembler des BBC-BASICs so aus:

DIM code% (100)
FOR pass = 0 TO 3 STEP 3
P% = code%

[

OPT pass

.start

SWI "Hourglass On"

MOV PC, R14

]
NEXT pass
PRINT "Startadresse &:" ~code$%
PRINT "ProgrammgrédBe ist &"; P%-start; "Bytes lang"
END

Listing 3.1.3

Listing 3.1.3 macht nur Sinn, wenn auch der Mauszeiger zu sehen ist. Falls der Mauszeiger
abgeschaltet ist, z. B. weil man durch Druck auf die Funktionstaste F12 von der WIMP auf
die Befehlszeile gewechselt hat, kann man mittels dem Befehl *pointer 1 zuvor den
Mauszeiger aktivieren.

Man kann in Listing 3.1.3 nun noch die Nummern &406C0 und &406C1 statt den Texten
"Hourglass_On" und "Hourglass_Off" ausprobieren und auch versuchen, die Programme
3.1.1 bzw. 3.1.2 mit dem Acorn Assembler oder der GCC zu erstellen. Als Grundlage
hierfiir mogen die Assemblerbefehle aus Listing 3.1.3 hilfreich sein. Das &-Zeichen ist
dabei stets mit einzugeben.

28

Beim Acorn Assembler (DDE) miissen wir beriicksichtigen, dal wir dem Assembler erst die
Namen der SWIs bekannt machen miissen (falls wir diese verwenden wollen). Diese Namen
sind in der Datei

DDE.Sources .DDE-Examples.ObjAsm.AsmHdrs.h.SWINames

zu finden. Am besten, man kopiert diese Datei mit den iibergeordneten Verzeichnissen
AsmHdrs.h.SWINames ins aktuelle Verzeichnis und bindet diese Datei mit dem Befehl
GET AsmHdrs.h.SWINames ins Quellprogramm mit ein. Leider sind diese Art von
Listen nicht im Programmverzeichnis vom Acorn Assembler enthalten. Diese unschone Art
wurde wohl von Unix iibernommen.

Beim Befehl GET handelt es sich nicht um ein Mnemonic! Also um keinen Befehl, welcher
der Prozessor in irgend einer Art und Weise kann. Dieser Befehl wird daher auch nicht in
Maschinensprache iibersetzt. Er macht nur dem Assembler etwas bekannt, damit er an Stelle
des Namens die entsprechende Nummer verwenden kann. Sonst kann er mit dem Namen
nichts anfangen.

AufBerdem ist zu beriicksichtigen, dafl der Name des SW1s im Acorn Assembler im
Vergleich zum BASIC Assmbler ohne Anfiihrungszeichen eingegeben werden muf3! GroS3-
und Kleinschreibung sind ebenfalls zu beachten!

AREA |[main|, CODE
GET AsmHdrs.h.SWINames
ENTRY

SWI Hourglass On

MOV pc, rl4

END

Listing 3.1.5

m|<] ADFS:HardDisc4.$.Daten.Assembler.3-1-5 ||

- o d

IRunimage AsmHdrs o] S

=]

Bild 3.1: Das Arbeitsverzeichnis von Listing 3.1.1.5 fiir den Acorn Assembler mit dem
bereits in Maschinensprache iibersetzten Programm

Bei Verwendung der GCC miissen die SWIs noch einmal anders behandelt werden. Am

29

einfachsten ist es, man schreibt einfach die Nummer des SW1s in hexdezimaler Form hinter
den Befehl. Allerdings muf3 diese Nummer hier statt mit einem & mit einem 0x beginnen.

.global _start

_start:
SWI 0x406CO
MOV PC, R14

Listing 3.1.6

Ubersetzt (compiliert) wird dieser Quellcode wie unter Abschnitt 2.4 fiir die GCC
beschrieben.

Will man bei der GCC die Namen der SWIs verwenden - ich habe dazu nichts gefunden.
Der Befehl GET und die Datei AsmHdrs .h.SWINames fiir den Acorn Assembler aus
Listing 3.1.5 scheint die GCC jedenfalls nicht zu verstehen.

3.1.2 SWIs mit einem einzigen Parameter

Parameter werden iiblicherweise mit den Registern des Prozessors iibergeben. Das heif3t,
man fiillt zuerst die Register des Prozessors mit den entsprechenden Daten. AnschlieSend
ruft man den entsprechenden SWI auf.

Der erste SWI mit der Nummer &0 gibt - wen sollte es wundern! - ein Zeichen auf den
Bildschirm aus. Klar, man mochte ja etwas auf dem Bildschirm sehen. Deshalb ist dieser
SWI so wichtig. Das Zeichen, welches man ausgeben mochte, mufl ASCII-codiert im
Register RO stehen.

Das kleine 'a' hat den ASCII-Wert 65 oder hexdezimal 41. Das geht dann so:

Maschinensprache: Assembler:

E3A0 0041 MOV RO, #&41
EF00 0000 SWI OS_WriteC
E1A0 FOOE MOV PC, R14
Listing 3.2.1 und Listing 3.2.2

Wie man beim Vergleich von Listing 3.2.1 und Listing 3.2.2 erkennen kann, gibt es in
Maschinensprache zwei verschiedene MOV-Befehle. Der eine Befehl (E1) iibertridgt den
Wert von einem Register in ein anderes. Der andere Befehl (E3) aber schreibt einen festen
Wert in ein Register. Dieser Wert ist Bestandteil von dem Befehl, der im Speicher steht und
vier Bytes umfaft.

30

Nun gibt es hierbei das Problem, daf3 dieser Wert nur ein Byte (8 Bit) umfassen kann. Denn
die anderen drei Bytes werden fiir den Befehl selbst gebraucht. Ein Register ist aber 32 Bit
breit! Wir konnen mit diesem Befehl (E3) allein also kein Register fiillen.

Im Falle vom SWI 0 oder OS_WriteC ist das nicht schlimm, weil diese Routine nur den
(erweiterten) ASCII-Satz verarbeiten kann und dieser (erweiterte) ASCII-Satz nur 1 Byte
(oder acht Bit) umfaft.

Befehlsiibersicht
Maschinensprache: Assembler:
EOAO0 <ZR>00<QR> MOV <ZR>, <QR>

mit

<ZR>: Zielregister
<QR>: Quellregister

Kopiert den Inhalt vom Quellregister ins Zielregister.
Wichtige Befehle und Beispiele:

Maschinensprache: Assembler:

EOAQ FOOE MOV PC, R14

Befehl muf} ganz am Schluf} eines Programmes stehen, damit RISC OS ordnungsgemélf
weiterarbeiten kann. Er wird auch zur Beendigung eines Unterprogramms verwendet.

Maschinensprache: Assembler:
EF &SWI SWI

31

